Compressible Navier–Stokes Equations with hyperbolic heat conduction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressible Navier-Stokes equations with hyperbolic heat conduction

In this paper, we investigate the system of compressible Navier-Stokes equations with hyperbolic heat conduction, i.e., replacing the Fourier’s law by Cattaneo’s law. First, by using Kawashima’s condition on general hyperbolic parabolic systems, we show that for small relaxation time τ , global smooth solution exists for small initial data. Moreover, as τ goes to zero, we obtain the uniform con...

متن کامل

Operational Approach and Solutions of Hyperbolic Heat Conduction Equations

We studied physical problems related to heat transport and the corresponding differential equations, which describe a wider range of physical processes. The operational method was employed to construct particular solutions for them. Inverse differential operators and operational exponent as well as operational definitions and operational rules for generalized orthogonal polynomials were used to...

متن کامل

Hyperbolic Heat Conduction in Composite Materials

A hyperbolic heat conduction (HHC) equation has been proposed to replace Fourier heat conduction equation in cases heat transfer takes place in a very short period of time or at extremely low temperature. There is a growing interest in the investigation of HHC problem in recent years, but to the author’s knowledge, HHC in composite media in multidimension has not been studied up to date. This p...

متن کامل

Splitting schemes for hyperbolic heat conduction equation

Rapid processes of heat transfer are not described by the standard heat conduction equation. To take into account a finite velocity of heat transfer, we use the hyperbolic model of heat conduction, which is connected with the relaxation of heat fluxes. In this case, the mathematical model is based on a hyperbolic equation of second order or a system of equations for the temperature and heat flu...

متن کامل

Compressible Navier-stokes Equations with Temperature Dependent Heat Conductivities

We prove the existence and uniqueness of global strong solutions to the one dimensional, compressible Navier-Stokes system for the viscous and heat conducting ideal polytropic gas flow, when heat conductivity depends on temperature in power law of Chapman-Enskog. The results reported in this article is valid for initial boundary value problem with non-slip and heat insulated boundary along with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Hyperbolic Differential Equations

سال: 2016

ISSN: 0219-8916,1793-6993

DOI: 10.1142/s0219891616500077